Brainstorming about WG1
Representation of structured DS

Mihai Lupu, Raquel Trillo-Lado
TU Wien - Austria, University of Zaragoza - Spain
Outline

- Introduction
 - Topics related to WG1 according to the MoU
 - Statistical data about people on the Working Group 1 and feedback received

- Topics on which Keystone members of WG1 are currently working on

- Brainstorming: more ideas, topics, relevant people or institution to follow...
 - Related works
 - Challenges, ideas
 - Relevant people or institutions out of Keystone to follow
Introduction. Topics

WG1
Representation of Data Sources

WG2
Keyword-based Search

WG 3: User Interaction & keyword query interpretation

WG4
Research integration, showcases, benchmarks and evaluations

Data

Feedback

Happy Users or SW agents

SESSION 2. 6TH KEYSTONE MEETING
WG1: Representation of Data Sources

WG1.A: Generation of Structured Data

WG1.B: Storing & Indexing Structured Data

WG1.C: Characterization, Integration & Federation of Data Sources

WG1.D: Selection & Retrieval of Data Sources
Introduction. Statistics

- 162 members: 41 Female and 121 Males (http://www.keystone-cost.eu/keystone/work-group/wg1/)
- Most of the members are active currently: 159 members (119 M, 40 F).

<table>
<thead>
<tr>
<th>Country</th>
<th>Nº Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania (AL)</td>
<td>1</td>
</tr>
<tr>
<td>Austria (AT)</td>
<td>2</td>
</tr>
<tr>
<td>Belgium (BE)</td>
<td>3</td>
</tr>
<tr>
<td>Bulgaria (BG)</td>
<td>3</td>
</tr>
<tr>
<td>Switzerland (CH)</td>
<td>2</td>
</tr>
<tr>
<td>Cyprus (CY)</td>
<td>1</td>
</tr>
<tr>
<td>Germany (DE)</td>
<td>12</td>
</tr>
<tr>
<td>Estonia (EE)</td>
<td>1</td>
</tr>
<tr>
<td>Greece (EL)</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Nº Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain (SP)</td>
<td>27</td>
</tr>
<tr>
<td>Finland (FI)</td>
<td>2</td>
</tr>
<tr>
<td>France (FR)</td>
<td>10</td>
</tr>
<tr>
<td>Croatia (HR)</td>
<td>4</td>
</tr>
<tr>
<td>Ireland (IE)</td>
<td>5</td>
</tr>
<tr>
<td>Italy (IT)</td>
<td>13</td>
</tr>
<tr>
<td>Macedonia (MK)</td>
<td>1</td>
</tr>
<tr>
<td>Malta (MT)</td>
<td>4</td>
</tr>
<tr>
<td>Netherlands (NL)</td>
<td>5</td>
</tr>
<tr>
<td>Norway (NO)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Nº Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poland (PL)</td>
<td>2</td>
</tr>
<tr>
<td>Portugal (PT)</td>
<td>5</td>
</tr>
<tr>
<td>Romania (RO)</td>
<td>23</td>
</tr>
<tr>
<td>Serbia (RS)</td>
<td>7</td>
</tr>
<tr>
<td>Sweden (SE)</td>
<td>2</td>
</tr>
<tr>
<td>Slovenia (SI)</td>
<td>2</td>
</tr>
<tr>
<td>Slovakia (SK)</td>
<td>3</td>
</tr>
<tr>
<td>New Zealand (TK)</td>
<td>2</td>
</tr>
<tr>
<td>Ukraine (UA)</td>
<td>2</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>5</td>
</tr>
</tbody>
</table>
Feedback received from members of WG 1 per country:

<table>
<thead>
<tr>
<th>Country</th>
<th>Nº Members</th>
<th>Country</th>
<th>Nº Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania (AL)</td>
<td></td>
<td>Spain (ES)</td>
<td>20</td>
</tr>
<tr>
<td>Austria (AT)</td>
<td>2</td>
<td>Finland (FI)</td>
<td>1</td>
</tr>
<tr>
<td>Belgium (BE)</td>
<td></td>
<td>France (FR)</td>
<td>2</td>
</tr>
<tr>
<td>Bulgaria (BG)</td>
<td>1</td>
<td>Croatia (HR)</td>
<td></td>
</tr>
<tr>
<td>Switzerland (CH)</td>
<td>1</td>
<td>Ireland (IE)</td>
<td>1</td>
</tr>
<tr>
<td>Cyprus (CY)</td>
<td></td>
<td>Italy (IT)</td>
<td>5</td>
</tr>
<tr>
<td>Germany (DE)</td>
<td>2</td>
<td>Macedonia (MK)</td>
<td></td>
</tr>
<tr>
<td>Estonia (EE)</td>
<td>1</td>
<td>Malta (MT)</td>
<td></td>
</tr>
<tr>
<td>Greece (EL)</td>
<td>5</td>
<td>Netherland (NL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Norway (NO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poland (PL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Portugal (PT)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Romania (RO)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serbia (RS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sweden (SE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slovenia (SI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slovakia (SK)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>New Zealand (TK)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ukraine (UA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>United Kingdom (UK)</td>
<td></td>
</tr>
</tbody>
</table>
Research groups involved in the feedback received:

<table>
<thead>
<tr>
<th>Country</th>
<th>Nº Members</th>
<th>Research groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vienna B: 1</td>
<td></td>
</tr>
<tr>
<td>Switzerland (CH)</td>
<td>Geneva: 1</td>
<td>University of Geneva, Faculty of economics and social sciences, department Hautes études commerciales</td>
</tr>
<tr>
<td>Germany (DE)</td>
<td>Hannover: 2</td>
<td>L3S Research Center of the Leibniz University Hannover</td>
</tr>
<tr>
<td>Finland (FI)</td>
<td>Jyvaskyla: 1</td>
<td>Industrial Intelligent Group. MIT Department, Agora Centre. University of Jyvaskyla.</td>
</tr>
<tr>
<td>Ireland (IE)</td>
<td>Galway: 1</td>
<td>Insight Centre for Data Analytics. National University of Ireland (NUI Galway,)</td>
</tr>
</tbody>
</table>
Introduction. Statistics

- Research groups involved in the feedback received:

<table>
<thead>
<tr>
<th>Country</th>
<th>Nº Members</th>
<th>Research groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greece (EL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thessaly: 1</td>
<td></td>
<td>Department of Computer Science and Biomedical Informatics, School of Sciences,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Thessaly.</td>
</tr>
<tr>
<td>Crete A: 1</td>
<td></td>
<td>Computer Science Department, University of Crete.</td>
</tr>
<tr>
<td>Crete B: 1</td>
<td></td>
<td>Software Technology and Network Applications Laboratory, Department of Electronic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>& Computer Engineering, Technical University of Crete.</td>
</tr>
<tr>
<td>Athens: 1</td>
<td></td>
<td>Institute for the Management of Information Systems of the Research and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Innovation Centre ATHENA, located in Athens.</td>
</tr>
<tr>
<td>Peloponnese: 1</td>
<td></td>
<td>Knowledge and Uncertainty Research Laboratory (RAB Lab), Department of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informatics and Telecommunications of the University of Peloponnese.</td>
</tr>
</tbody>
</table>
Research groups involved in the feedback received:

<table>
<thead>
<tr>
<th>Country</th>
<th>Nº Members</th>
<th>Research groups</th>
</tr>
</thead>
</table>
| Spain (SP)| • Segovia: 1
• Coruña: 5
• Santiago: 1
• Zaragoza A: 7
• Zaragoza B: 2
• Málaga: 3
• Vigo: 1 | • DataWeb Group, Department of Computer Science, University of Valladolid, Segovia.
• Databases Laboratory (LBD), Computer Science and Technology Faculty, University of A Coruña.
• Computer Graphics and Data Engineering (COGRADE) Singular Information Technologies Research Center (CiTIUS), University of Santiago de Compostela.
• Computer Science and Software Engineering Department (DIIS), University of Zaragoza.
• Aragon Institute of Engineering Research (I3A), University of Zaragoza.
• Khaos Research, Department of Computer Languages and Computing Sciences, University of Malaga.
• ETSE Telecomunicación, University of Vigo |
| France (FR)| • Lyon: 1
• Paris: 1 | • University Claude Bernard Lyon
• CNRS - Centre national de la recherche scientifique |
Research groups involved in the feedback received:

<table>
<thead>
<tr>
<th>Country</th>
<th>Nº Members</th>
<th>Research groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy (IT)</td>
<td>• Modena: 2
• Trento A: 1
• Trento B: 1
• Bologna: 1</td>
<td>• Databases (DBGroup), University of Modena and Reggio Emilia, Modena.
• Data Management Group, Department of Information Engineering and Computer Science at the University of Trento.
• Process and Data Intelligence (PDI), Information Technology Center, at Fondazione Bruno Kessler.
• Department of Computer Science and Engineering, University of Bologna.</td>
</tr>
<tr>
<td>Romania (RU)</td>
<td>• Bucharest: 1</td>
<td>• Faculty of Automatic Control and Computers Computer Science Department, University Politehnica of Bucharest.</td>
</tr>
<tr>
<td>Estonia (EE)</td>
<td>• Tallinn: 1</td>
<td>• School of Information Technologies, Department of Software Science, Tallinn University of Tecnologies.</td>
</tr>
<tr>
<td>Bulgaria (BG)</td>
<td>• Sofia: 1</td>
<td>• Bulgarian Academy of Sciences, Sofia.</td>
</tr>
</tbody>
</table>
Introduction. Statistics

Jyvaskyla
Santiago de Compostela
Vienna
Trento A
Segovia
Coruña
Trento B
Modena
Bologna
Geneva
Zaragoza A
Sofia
Athens Thessaly
Crete B
Crete A
Hannover A
Galway
Trento A
Zaragoza B
Vienna A
Coruña

Belgrade, 21 Feb 2017
Session 2. 6th Keystone Meeting
Topics WG1 members are working on

WG1.A
Generation of Structured Data

WG1.B
Storing & Indexing Structured Data

WG1.C
Characterization, Integration & Federation of Data Sources

WG1.D
Selection & Retrieval of Data Sources

Groups: persons
- Santiago: 1
- Zaragoza: 3
- Vienna A: 1
- Sofia: 1
- Lyon: 1
- Crete B: 1
- Athens: 1
- Malaga: 1

WG1.A
- Vienna A: 1
- Vienna B: 1
- Segovia: 1
- Coruña: 5
- Jyvaskyla: 1
- EL-Greece
- Peloponnese: 1
- Bucharest: 1
- Thessaly: 1

WG1.B
- Galway: 1
- Santiago: 1
- Hannover: 4
- Zaragoza A: 7
- Zaragoza B: 2
- Poland: 1
- Geneva: 1
- Vienna B: 1
- Modena: 2
- Trento A: 1
- Trento B: 1
- Paris: 1
- Sofia: 1
- Bologna: 1

WG1.C
- Hannover: 4
- Trento A: 1
- Trento B: 1
- Paris: 1
- Bologna: 1

Others
All groups

BELGRADE, 21 FEB 2017
Brainstorming. Topics WG1.A

- Where structured data come from?
- Who or what generates structured data?

- From **Sensors** and **IoT devices**
- From **unstructured or semi-structured data sources**:
 - Documents written in **Natural Languages**
 - **Traditional HTML Web pages**
- From **human users** in a **collaborative way**:
 - Definition ontologies or common vocabularies or metadata
 - Population of those ontologies with instances
- From other **Structured Data sources**:
 - Translation or transformation of data
 - **Humans interactions**
 - **SW interactions**
Brainstorming. Topics WG1.A

- What data from sensors should be considered?
- How to exploit structured data considering privacy and security issues?
- Which device should process the data?
 - Fog Computing VS Cloud Computing
- How to anonymize personal data to protect people?
 - Guidelines, techniques, tools?
- What other dimensions should be considered? How to deal with the Right to Forgetfulness?
 - With provenance information?
 - Blockchains

- Raw Data VS Smart Data
 - Generating data each certain time (period) VS generating data only when a changes happens (changes bigger than a certain threshold)
 - Generating data all the time VS consulting current values of sensors when they are required (push vs pull approaches)

- Dimensions of Security and/or Safety:
 - Availability
 - Confidentiality
 - Integrity
 - Authenticity
 - Traceability (provenance)
Brainstorming. Topics WG1.A

- Non-textual Data:
 - Images
 - Video
 - Multidimensional arrays (environmental data)

- Generation of Structured Data

- How to deal with non-textual data?
- What features to consider for: images, video, streaming data from environmental sensors?
- Should all data have a unique identifier? How to build it?
- Should this kind of data be associated to a geographical position? Which granularity should be considered: country, GPS coordinates?
Brainstorming. Topics WG1.A

- Generation of Structured Data
 - Methodologies, standards, good practices to publish or generate structured data?
 - Which are the main problems of these ones?

- Methodologies to publish structured data (and/or data sources) on different medias:
 - On the Web:
 - Principles of Linked Data
 - RDFa Standard
 - Textual ETL and Web ETL
 - Entity Extraction
 - Entity De-Duplication
 - George Bush, G. Bush
 - The King of Spain, Felipe VI

- How to consume Linked Data Web? Crawling of Web pages with Web Mining considering RDFa annotations VS. Querying SPARQL endpoints?
 - Disadvantages of crawling and Web Mining/Scrapping:
 - Hidden Web: Pages are dynamically generated
 - Disadvantages of SPARQL endpoints:
 - How to express the information need in SPARQL?
Brainstorming. Topics WG1.A

- How to create ontologies or Knowledge Bases?
- How to populate them?
- Advantages and disadvantages of Bottom-Up approaches from Folksonomies VS Top-Down approaches from the knowledge of the domain experts?
- What kind of recommender systems should be used?
 - Collaborative, Content-Based, Knowledge-Based, Context Aware, Hybrid?
 - Which should recommend?

Creation of Knowledge Bases (KB): A KB consist of a set of ontologies and a set of instances consistent with the constraints defined in the ontologies:

- How to define new vocabularies or ontologies:
 - RDFS
 - OWL
- How to populate those KB:
 - RDF, OWL
 - ETL-based Systems
 - Recommendation systems to suggest attributes/properties and values to be included by users. For example Wikinfoboxer (http://sid.cps.unizar.es/Infoboxer and http://sid01.cps.unizar.es/#!/login)
Brainstorming. Topics WG1.A

- Methodologies, tools and techniques to translate Structured Data sources?

- Standards to translate Relational Databases to RDF Stores:
 - Direct Mapping (automatic way)
 - Relational 2 RDF Matching Language (R2RML) (refine way)

- Extraction, Transformation and Load (ETL)
 - Data curation and integration
 - Multilingual
 - Heterogeneity
 - Provenance information

- Materialization or not of the RDF data? i.e., Using wrappers to access the original data source by using a different models (RDF) or dealing with the data redundancy?

- How to deal with different models with different semantics: Relational model VS. RDF model?
Brainstorming. Topics WG1.A

- More about this point? Related Works, etc?
- To be filled by all WG members and collaborators or in the session

...
Introduction. Topics WG1.B

- What kind of models exists?
- What structures and indexes are used for those models?

Types of Structured Data Sources
- Relational Databases
- Documental Databases
- Graph-oriented databases (Triple Stores)
- Multivalued Databases
- Object-oriented databases
- Columnar Databases
- Key-value databases
- Multi-model databases

These data sources can be **distributed** on a network. Moreover, **federation** of independent data sources could be required.

- Which models are more appropriate to satisfy the following properties?
 - Atomicity, Consistency, Isolation Durability (ACID)
 - Basically Availability, Soft-State, Eventually Consistent (BASE)
 - Consistency, Availability, Partition Tolerance (CAP)

- Which are the structures and indexes to store these data sources and retrieve data from them? Which languages apart from SQL and SPARQL?
Introduction. Topics WG1.B

Storing and Indexing Structured Data

- What kind of models exist?
- What structures and indexes are used for those models?

- Structures and Indexes to store Structured Data Sources:
 - In Memory VS In Disk

 Compact structures VS structures over plain data

- **Self-Indexing Structures.** Both the index and the data are kept in a unique in-memory data structure that allows indexed searches and to recover the original data.

- Any examples?
 - Relational Databases:
 - Balance trees and B+ trees
 - Documental Databases:
 - Inverted index
 - Several members of Keystone have proposed different structures for RDF:
 - Head Dictionary Triple (HDT), HDT-MapReduce, HDT++
 - RDFCSA (A compact RDF store based on compressed Suffix Arrays, a well known self-index)
 - Compressed vertical partitioning for RDF (K2-triples)
Introduction. Topics WG1.B

- How to deal with the dynamic nature of RDF or other kind of Structured Data Sources?
- How to deal with the different versions and temporal data?

- Structures and indexes to deal with the evolution along time of Structured Data Sources

- Any examples?
 - Several members of Keystone has proposed different structures for versioning RDF:
 - RDF-Archive or v-RDFCSA (based on RDFCSA)
 - Compressed Suffix-Array for Temporal-Graph
 - Compressed kd-tree for temporal-Graph
 - Other Keystone members have defined ontologies and query languages to deal with versions of RDF
 - Ontology for temporal reasoning based on Extended Allen’s Interval Algebra
 - Query Language for Multi-version Data Web Archives
Introduction. Topics WG1.B

- More about this point? Related Works, etc?
- To be filled by all WG members and collaborators or in the session

- ...

Storing and Indexing Structured Data

BELGRADE, 21 FEB 2017

SESSION 2. 6TH KEYSTONE MEETING
Introduction. Topics WG1.C

- Which metadata should be considered to describe a (RDF) data source?
- How to evaluate the quality of a Data Source?

- Metadata describing Data Sources
 - Standards to describe Data Sources:
 - RDFS, OWL
 - DCAT (https://www.w3.org/TR/vocab-dcat/)

- Measurements of the Quality of Data Sources
 - Metrics considered:
 - Graph Connectivity

- Methods and tools
 - qSKOS, Skosify, PoolParty

- Some Keystone members are working on a survey paper about “DataSet Profiling”

- Some Keystone members are working on:
 - “Quantifying the connectivity of a semantic warehouse”
 - “Automatic methods to report the quality of thesauri or other sources represented in SKOS”
 - “BEAUFORD: A Benchmark for Evaluation of Formalization of OWL Definitions”
Introduction. Topics WG1.C

- More about this point? Related Works, etc?
- To be filled by all WG members and collaborators or in the session

Characterization of Data Sources

- ...

BELGRADE, 21 FEB 2017

SESSION 2. 6TH KEYSTONE MEETING
Introduction. Topics WG1.D

Selection & Retrieval of Data Sources

- How to discover structure (RDF) data sources?
- How to integrate/fusion structure (RDF) data sources?
- Recommendation of new data sources by considering the dataset profiles of the data sources already used or consulted by a user.
- Ontology Matching techniques to automatically discover equivalent concepts, properties and instances from two different ontologies (or KB).

- Some Keystone members are working on a survey paper about “DataSet Profiling and Recommendation” and “Intension-based DataSet Recommendation for Data-Linking”.
- Some Keystone members are working on “Generating Benchmark Data for Entity Matching” (EMBench).
Introduction. Topics WG1.D

- More about this point? Related Works, etc?
- To be filled by all WG members and collaborators or in the session

Selection & Retrieval of Data Sources

- ...

SESSION 2. 6TH KEYSTONE MEETING
List of Participants in WG 1 who provide feedback

- Dr Stefan Dietze
- Prof Gilles Falquet
- Prof Antonio Fariña Martínez
- Dr Francesco Guerra
- Dr Claudia Ifrim
- Dr Mihai Lupu
- Prof José Ramón Ríos Viqueira
- Dr Tarcísio Souza
- Prof Vagan Terziyan
- Dr Raquel Trillo-Lado
- Prof Yannis Velegrakis
- Dr Manolis Wallace
- Dr Sergio Ilarri
- Dr Velislava Stoykova
- Dr Enn Õunapuu
- Dr Jonh Breslin
- Dr Laura Po
- Dr Elena Demidova
- Dr Genoveva Vargas
- Dr Marín López Nores
- Dr Javier Nogueras
- Dr Guilles Falquet
- Dr Ana Cerdeira-Pena
- Dr Ramón Hermoso
- Ángel Luís Garrido
- Dr Mª del Mar Roldan
- Dr Fernando Bobillo
- Dr Carlos Bobed
- Dr Eduardo Mena
- Dr Javier Lacasta
- Catarina Ferreira da Silva
- Dr.Pablo Fafalios
- Dr Ilaria Bartolini
- Dr Ekaterini Ioannou
- Dr Yannis Stavrakas
- Dr Mauro Dragoni
- Dr Vagan Terzivan
- Dr Ioannis Anagnostopoulos
- Dr José Ramón Paramá Gabía
- Dr Javier D. Fernández
- Dr Miguel A. Martínez
- Prof José F. Aldana
- Prof Nieves R. Brisaboa
- Dr Susana Ladra