Collaborative Information Seeking: On tracability, sensemaking and recommendation

Andreas Nürnberger, Dominic Stange, Tatiana Gossen, Michael Kotzyba
INFORMATION SEEKING
AN INFORMAL DEFINITION…
Information Seeking

Information seeking is the process or activity of attempting to obtain information in both human and technological contexts. [Wikipedia]

Wilson’s nested model of information behavior areas (Wilson, 1999)
Information Behaviour

By information behaviour is meant those activities a person may engage in when identifying his or her own needs for information, searching for such information in any way, and using or transferring that information. [Wilson, 1999]

Wilson’s extended version of information behavior [Wilson, 1996]
Byström and Järvelin’s Model

The Information Seeking Surface Model [Byström and Järvelin, 1995] takes into account task complexity and problem solving aspects of information seeking in a work environment.
More on seeking...

- Models are rather complementary than contrary and can focus on different aspects, e.g.:
 - Kuhlthau’s more phenomenological model with 6 stages and corresponding activities [Kuhlthau 1991, 1994]: Initiation, Selection, Exploration, Formulation, Collection, Presentation
 - [Ellis 1989, 1993] empirically categories or “features”: Starting, Chaining, Browsing, Differentiating, Monitoring, Extracting, Verifying, Ending
 - Models can be aggregated, e.g. by [Wilson’1999] and can be used for HCI–Design

- Some models are rather seen as instance or a class of information-seeking behavior, e.g.:
 - Exploratory Search
EXPLORATORY SEARCH
AN INFORMAL DEFINITION…
Exploratory Search

Exploratory search is a specialization of information exploration which represents the activities carried out by searchers who are either:

- unfamiliar with the domain of their goal
- unsure about the ways to achieve their goals
- or even unsure about their goals in the first place

[Wikipedia, 2015]

Exploratory search is a highly dynamic process (of a user) to interact with an information space in order to satisfy an information need that requires learning about structure and/or content of the information space.

[Gossen et al., 2012]
Learning as Part of Information Seeking

[Marchionini, 2006]
Relationship between learning activities and searching difficulty based on a user study by [Jansen et al, 2009].
Exploratory Search

- The user’s goal is to learn, to investigate, to understand, to conceptualize, …

- Therefore, we need methods to
 - search, navigate and browse
 - sort, structure, filter (interactively)
 - change perspective
 - …

- Remark: For some cases ideas and approaches from exploratory data analysis can be transferred
An Example: Visual Berrypicking

- **Motivation:**
 - Support Users in Exploring big collections of documents (here: Images)
 - **Main Goal:** Provide overview and context

USER INTERFACES

HOW TO EFFICIENTLY INTERACT WITH INFORMATION…
The HCI aspects of usability...

Effectiveness:
The accuracy and completeness with which users achieve certain goals

Efficiency:
The relation between (1) effectiveness and (2) the resources expended in achieving it

Satisfaction:
The users’ comfort with and positive attitudes towards the system

[ISO 9241-110]
HCI Aspects of Information Seeking

- Ultimate goal: Support all steps of seeking processes

![Diagram showing the stages of information seeking with labels: Initiation, Selection, Exploration, Formulation, Collection, Action.]

Designing for Information Seeking

- Some fundamental requirements on seeking tools:
 - Open-ended exploration
 - Information management
 - Monitoring
Information Seeking: Open-ended Exploration

- User in initial phase deals with uncertainty
- Help users to explore
Foodily, a recipe search engine, allows users to save their favorite recipes and organize them into meal plans [Russell-Rose & Tate, 2013]
Information Seeking: Monitoring

- Towards the end of the journey
- Monitor for new opportunities given the same criteria
 - Automatically
 - On demand
A Different Perspective...

- **Exploratory Search** (How)
- **Complex Search** (What)
- **Professional Search** (Who)

Actions: Lookup, Learn, Investigate (Marchionini)

Information about: Problem, Domain and Problem-Solving (Byström & Järvelin)

Business Context: Plan, Collaborate, Summarize
Complex and Professional Search: Stages

- Plan
 - Repeating search topics (evolving domains, updates)
 - User roles during search

- Explore, Collect and Collaborate(!)
 - Share ideas and findings
 - Contribute
 - Discuss and evaluate

- Summarize
 - Synthesize and contextualize
 - Formulate for decision makers
Enhancing the Search Experience

Complete Search Process Integration

Search Behaviour Models

Search Task

Plan

Explore

- Facetted Browsing
- Search History Visualizations
- Recommendation Systems
- Adaptive UIs

Make Sense

- Bookmarking
- Document Tagging
- Snippet Extraction
- Snippet Organization

Summarize

...
Exploratory Search

- Search History Visualization
- Query Suggestion
- Facets
- Context
- Adaptive UI

2012: https://chrome.google.com/webstore/detail/visual-history/emnpecigdjglcgfabfnmlphgfdifaan

Evaluation of a Scatter/Gather Interface for Supporting Distinct Health Information Search Tasks, Zhang et al., 2014
Complex Search

- Multistage Search Sessions

Complex Search

- Multistage Search Sessions
- Tagging and Content Organization

Sewing the Seams of Sensemaking, [Hearst and Degler, 2013]
Complex Search

- Multistage Search Sessions
- Tagging and Content Organization
- Search Aspects

An interface that displays „aspects“ of search results for better evaluation ([Villa et al., 2009])
COLLABORATIVE INFORMATION SEEKING
HOW TO SUPPORT COLLABORATING SEARCHERS…
Collaborative Search: A definition

- Collaborative search is a set of search activities that make use of social interactions with others before, during and/or after the search [Evans & Chi, 2008].

- These interactions may be explicit or implicit, co-located or remote, synchronous or asynchronous [Evans & Chi, 2008].

- During collaborative search all participants have the same searching goal and actively conduct a specific search together in order to achieve this goal [Gossen et al., 2011].
Dimensions [Golovchinsky et al., 2008]

- Intent
 - Explicit
 - Implicit (collaborative filtering)
- Depth of mediation
 - User interface
 - Algorithm
- Concurrency
 - Synchronous
 - Asynchronous
- Location
 - Co-located
 - Remote
SearchTogether by Microsoft
Professional Search

What is needed to support a team of searchers?

- Traceability
 - Understand joint search strategy and findings

- Sensemaking
 - Bottom-up approach

- Recommendation
 - Exploit prior information and strategies (of yourself and other users)
Traceability

- Traceability in collaborative search describes a team's ability to understand the contents and semantics of their joint search strategy
 - How did the team approach a search topic?
 - What search directions did they take?
 - How did they find novel/relevant information?
 - What did they make of this information with respect to their search goal?

- Traceability can be seen as an extension of awareness in an information seeking task (e.g. group, workspace, contextual, and peripheral awareness, Liechti and Sumi, 2002)
An interface visualizing a teams joint search activity as an horizontal tree of search actions, Stange and Nürnberger, 2014
Sensemaking

- Process through which people assimilate new knowledge into their existing understanding [Russell–Rose & Tate, 2013]

- From internal to external schemas
 - The mental image of the world around you... is a model
 - People use selected concepts and relationships to represent the real system
Sensemaking as finding a representation that organizes information to reduce cost of an operation in a search task, Russell et al., 1993
Sensemaking: Four stages

1. Search
 - Locate documents that may be meaningful for investigation

2. Extract
 - Meaningful information must be extracted from those documents

3. Encode
 - Extracted ideas must be integrated into user’s semantic memory
 - Construction of domain schema

4. Analyze
 - Analyze the schema to gain insights
Sensemaking

From internal to external schemas...

- Sophisticated information tasks demand that one’s internal semantic model be disseminated into an external schema.

✓ Designing for sensemaking
 - Shoebox
 - Evidence file
 - Schema
Sensemaking: Shoebox

- Add documents to a collection/shoebox as rapidly as possible, e.g. using:
 - Text link
 - Checkbox
 - Icon

Google shopping: stores intermediate results in a list
Sensemaking: Evidence file

- Provide clues to how and why information or documents have been considered as being relevant to the information need

- More thorough examination of the curated collection
 - E.g. extract and save snippet to the evidence file
Collaborative Sensemaking

Workspace View in SearchTogether

Collaborative sensemaking using a Tabletop Display, Morris et al., 2010

Making notes and compiling reports with Coagmento, Shah, 2010
Sensemaking: Schema
Sensemaking for Teams in SCOT

- Making sense of collected information during a search task

- Co-searchers work together to interpret and contextualize the information they retrieve.

- Relationships between entities are restricted to what is specified in a domain ontology.
Recommendation

- Recommender systems are about **discovery**
Recommendation

- A good recommender brings up items that are
 - Relevant
 - Novel
 - Surprising

Common approach: Collaborative Filtering

- Task of predicting user preferences on new items by collecting “taste” information from a large number of other users
Recommendations

- How can we make recommendations more interesting?
 - increase serendipity!

- An example
 - create an environment where serendipitous recommendations become more likely
 - leverage the effect of bisociations!
Bisociations

Arthur Köstler: *The Act of Creation* (1964)

“the perceiving of a situation or idea, L, in two self-consistent but habitually incompatible frames of reference, M₁ and M₂. The event L, in which the two intersect, is made to vibrate simultaneously on two different wavelengths, as it were. While this unusual situation lasts, L is not merely linked to one associative context but bisociated with two.”

- simultaneous mental association of an idea or object with two fields / frames of reference ordinarily not regarded as related

- combine two different views on a music collection
Bisociations by Bridging Graphs

= path that connects ideas or objects
 a) of different domains (ordinarily not regarded as related)
 b) by incorporating another domain

For further discussions on exploration using bisociations see, e.g., [Gossen et al, 2012]
Combining Orthogonal Similarity Spaces

projection weights
- dynamics: 0.0
- rhythm: 1.0
- timbre: 0.0

distortion weights
- dynamics: 1.0
- rhythm: 0.0
- timbre: 1.0

S. Stellmach, S. Stober, A. Nürnberg, R. Dachselt, *Designing gaze-supported multimodal interactions for the exploration of large image collections*, In: Proc. of 1st Conf. on Novel Gaze-Controlled Applications (NGCA), 2011
Bisociations in Graphs

- bridging concepts
 - established by ambiguous terms or metaphors
 - word-plays (context switching leads to a surprising outcome often perceived as joke)

- bridging graphs
 - connect concepts from different domains by inducing one or multiple paths between those concepts.
 - either the two concepts must lie in different domains or the path must contain at least one vertex in a different domain

- structural similarity
 - common structures in the context of each concept, i.e., similar subgraphs
 - may lead to same / very similar abstraction of both concepts
Similarity Space + Linked Data (Graph)

projection: content-based similarity

nearest neighbors: graph traversal
Conclusions

- Collaborative Information Seeking is still far from being well supported by IT systems

- Main challenges:
 - How to model user interests? (Yes, still an issue!)
 - How to model users search strategies?
 - How to visualize in order to support efficient traceability and sensemaking?

- Research requires close collaboration between IR, ML and HCI communities.
References (1)

References (2)

[Stellmach et al.] S. Stellmach, S. Stober, A. Nürnberger, R. Dachselt, Designing gaze–supported multimodal interactions for the exploration of large image collections, In: Proc. of 1st Conf. on Novel Gaze–Controlled Applications (NGCA), 2011

